

Geotechnical Monitoring of Slopes in Central Georgia Highways STGEC - September 2025

Thomas Tye, PE

Atlanta | Mobile | Orlando | Tampa

CERM At A Glance

Successful delivery of more than 4,000 projects over 30 years has created economic opportunities for over 130 families across the Southeast.

4 Regional Offices serving 10 States

CERM Staff
Gen X - 45%
Baby Boomer - 24%
Millennial - 23%
Gen Z - 7%

Our Services

CERM's technical team consistently delivers a broad range of high-quality civil engineering services for our clients.

Construction Management

Program Management

Engineering Services

Survey & Mapping

Environmental Management

Remediation & Contracting

- Construction Engineering Inspections (CEI)
- Construction Materials Testing (CMT)
- Construction Reviews
- Pre-Construction Services
- RFI Reviews
- Project Closeout

- Project Management
- Contract
- Community
- Quality Control Inspections
- Facility Operations & Maintenance

- Management
- Engagement
- Regulatory Reporting
- Commissioning,

- Construction Material Testing & Special
- Inspections Geotechnical
- Site Design
- Stormwater Permitting & Management
- Water & Wastewater Management
- Roadway Engineering

- Asset Inventory Boundary Surveys
- Construction Staking
- Construction Verification
- · Right-of-Way and Deed Research
- Easements
- Streetscape
- GIS
- Topographic

- Due Diligence & Compliance
- Phase I, II, and III **FSAs**
- NFPA Environmental Planning and Permitting
- Industrial Hygiene
- Safety Management

- Asbestos, Lead, &
- Mold Abatement
- Demolition Services
- Environmental Restoration
- Soil & Groundwater Remediation
- Storage Tank Decommissioning
- Underground Storage Tank Removal

Roadways Slope Failures in "Kaolin Capital of the World" ~\$1B

Three sites within 20 miles in Central Georgia

Sandersville/Irwinton, Geology

Purpose of Presentation – Geotechnical Instrumentation

- Discuss the instrumentation used in slope failures in "Kaolin Country" roadways
- Methods employed and the difficulty of interpreting with variability of results
- Discuss the value of the data obtained
- Show how this data was used in the analysis
- Illustrate the value of "real-time" data

Geotechnical Instrumentation - Inclinometers

Geotechnical Instrumentation - Piezometers

US 441 – Roadway Slope Failure (#1)

- Roadway cracking for ~5 years (2009)
- Multiple overlays
- Need to define problem failure plane
- Moving so existing slope indicator piping crushed
- Part of fix to evaluate the problem
- Manual and automated monitoring of 4 inclinometers
- Excessive movements detected in large rain event

US 441 — In-Place Inclinometers

US 441 (SR 29) near Highway 112 (#2)

US 441 – Roadway Slope Failure (#2)

- Less than 1.5 miles south of #1 failure
- Similar with several overlays
- Need to define problem failure plane
- Design fix to evaluate the problem
- Manual monitoring of 11 inclinometers
- Movements detected in rain events

US 441 Slide area for 2300 If

US 441 (SR 29) Inclinometer Readings

Movement along interface below water table

SR 24— Large Slope Failure

SR 24— Extensive exploration and Monitoring

Varying readings/conditions – Tilt Change Used

SR 24 - Sandersville

Collapse of roadway

Conclusions

- Active slope failures will usually result in inclinometer data showing failure surface
- Allow enough time and usually rainstorms to see movement
- Profile change will likely reveal failure elevation
- Very large failures may not move quickly, may require tilt-change function to identify failure surface
- Water level readings are important for analysis.
- Automated data acquisition is valuable tool in measuring movements and can save time provide more data.

Questions?

Thank You

INTEGRITY LOYALTY INITIATIVE

